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Memory effects in a turbulent dynamo: Generation and propagation of a large-scale magnetic field
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We are concerned with large-scale magnetic-field dynamo generation and propagation of magnetic fronts in
turbulent electrically conducting fluids. An effective equation for the large-scale magnetic field is developed
here that takes into account the finite correlation times of the turbulent flow. This equation involves the
memory integrals corresponding to the dynamo source term describing the alpha effect and turbulent transport
of magnetic field. We find that the memory effects can drastically change the dynamo growth rate, in particular,
nonlocal turbulent transport might increase the growth rate several times compared to the conventional gradient
transport expression. Moreover, the integral turbulent transport term leads to a large decrease of the speed of
magnetic front propagation.
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I. INTRODUCTION

The problem of the generation and propagation of a m
netic field in turbulent electrically conducting fluids is o
fundamental importance due to various applications
plasma physics, astrophysics, geophysics, etc.@1–5#. It has
attracted much attention since the late 1960s when it
realized that the conditions for the occurrence of a lar
scale magnetic field can be found by applying a simple te
nique involving the mean helicity of the turbulence@3#. This
technique is based on the effective macroscopic equa
governing large-scale magnetic fieldB. The standard form of
the mean-field dynamo equation is

]B

]t
5curl~aB!1bDB1curl~u3B!, ~1!

whereu is the mean velocity field,a is the helicity, andb is
the turbulent diffusivity. Equation~1! is a common starting
point for analyzing the generation of the large-scale magn
field @1–8#. It has been also used for the analysis of t
propagation of magnetic fronts in spiral galaxies@9–11#.

The main disadvantage of Eq.~1! is that it has been de
rived for turbulent flow involving only two separated leng
scales for the velocity field—the integral length scale and
small turbulent scale@3#. It is clear that the assumption o
two separated scales is rather unrealistic for fully develo
turbulent flow, which involves a continuous range of spa
and temporal scales@6#. Thus, the purely local Eq.~1! is
applicable only under the assumption of a clear-cut sep
tion between ‘‘macroscopic’’ behavior of the averaged ma
netic field and the turbulent fluctuations at the ‘‘micr
scopic’’ level.
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It should be noted that Eq.~1! is similar to convection-
diffusion-reaction equations@12,13#. In fact, it can be re-
duced to the famous Fisher-Kolmogorov-Petrovsk
Piskunov~FKPP! equation@5,9#, which has become a basi
mathematical tool in the theory of propagating fronts trav
ling into the unstable state of the reaction-diffusion system
There has been an increased interest in this topic, becau
the large number of physical, chemical, and biological pro
lems that can be treated in terms of the FKPP equation~see,
for example,@12–14#!. Recently, there has been tremendo
activity to extend this analysis by introducing a more rea
tic description of the transport processes. The main mot
tion for this is that the diffusion approximation for transpo
admits an infinite speed of propagation. Due to this no
physical property of the diffusion solution, the FKPP equ
tion yields an overestimation of the propagation speed
traveling fronts@14–16#. We expect that a similar situatio
might take place in magnetohydrodynamics. The mean-fi
dynamo Eq.~1! also admits an infinite speed of magneti
field propagation. It is clearly a nonphysical property, b
cause the speed of the magnetic-field propagation canno
ceed the velocity of the largest eddy of turbulent flow. T
origin of this contradiction lies in thed-correlated-in-time
approximations for the turbulent velocity field~see below!.
In reality, these correlations have finite times of relaxatio
and what is more, these might be of the same order as
characteristic times for the growth rate of the large-sc
magnetic field since the physical origin of these correlatio
and the magnetic field generation are the same, namely
turbulent fluctuations.

II. MEAN-FIELD DYNAMO EQUATION WITH MEMORY

It is the aim of this paper to extend mean-field dynam
Eq. ~1! to the case when finite time correlations of turbule
flow are taken into account, and find out how the nonloca
time effect might influence the critical conditions for th
generation of magnetic field and its spatial propagati
Here, we do not consider feedback of magnetic fluctuati
on the large-scale turbulent velocity field. The latter nonl
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ear dynamo problem is extremely difficult to deal with a
little is known about the nonlinear saturation regime.

The most general phenomenological formulation of
dynamo problem that is considered here is represented b
equations for the average magnetic fieldB @3#:

]B

]t
5curlE1curl~u3B!, E5^u83B8&, ~2!

where primes denote the turbulent fluctuations and the an
lar brackets denote an ensemble averaging over the turb
pulsations. The main closure problem here is to express
bulent electromotive forceE in terms of average fieldB. The
classical expression leading to Eq.~1! is

E5a B2b curlB,

wherea andb are the statistical characteristics of turbule
velocity u8. However, under the assumptions of infinite co
ductivity, the electromotive forceE can be written as@3#:

E~x,t !52
1

3E2`

t

^u8~x,t !•curlu8~x,s!&B~x,s!ds

2
1

3E2`

t

^u8~x,t !•u8~x,s!&curlB~x,s!ds. ~3!

The local mean-field Eq.~1! can be derived from Eqs.~2!
and~3! under the assumptions that the correlations appea
in Eq. ~3! are approximated by the delta functions in time

^u8~x,t !•curlu8~x,s!&523a d~ t2s!,

^u8~x,t !•u8~x,s!&53b d~ t2s!.

However, as was mentioned in Ref.@4# ~p. 136! ‘‘ . . . the
assumption of instantaneous correlations seems to be a
ous restriction to the theory . . . ,’’ since in real turbulence
the characteristic times of these correlations are finite. It
lows from Eq.~3! that in the case of finite correlation time
the electromotive force should contain the integrals over
history of B and curlB. In this paper we suggest the follow
ing general form for electromotive forceE in the limit of
infinite conductivity:

E5a~x!E
2`

t

GaS t2s

ta
DB~x,s!ds

2b~x!E
2`

t

GbS t2s

tb
D curlB~x,s!ds, ~4!

whereGa(y) and Gb(y) are positive, decreasing function
that tend to zero asy→`. Parametersta andtb control the
time correlations of the random velocity field at a fixed spa
position. Formula~4! represents the generalization of th
classical relationE5aB2b curlB for the case when the cor
relation memory of turbulent flow is taken into account. B
inserting Eq.~4! into Eq.~2! one can get the nonlocal in tim
mean-field dynamo equation
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]B

]t
5E

2`

t

GaS t2s

ta
D curl@aB~x,s!#ds

2E
2`

t

GbS t2s

tb
D curl@b curlB~x,s!#ds1curl~u3B!.

~5!

It should be noted that Eq.~5! is valid only in the limit of
infinitely large conductivity. This case is of specific intere
for magnetohydrodynamics of plasma and many problem
astrophysics and geophysics@3#. Many different constitutive
models might arise from different choices ofGa(y) and
Gb(y). Equation~1! can be considered as a limiting case
Eq. ~5! when Ga,b(t2s)5d(t2s) (ta,b→0). Transport
memory kernelGb ensures the finite velocity of propagatio
of a magnetic field, which is determined by the rate of t
bulent pulsations@6#. Relaxation timetb can be determined
from the root-mean-square velocityurms5Ab/tb of turbu-
lent fluctuations. Integral kernelGa is used to express th
fact that the dynamo growth of a magnetic field at a timet in
the local vicinity of spatial pointx is determined by the pas
values of curlB. It should be noted that some aspects of t
influence of correlation memory on the intensity of thea
effect have been studied by Cattaneo and co-authors@5#. It
has been shown that ‘‘ . . . the effect of a large-scale mag
netic field is to induce a long-term memory in the field
turbulence’’ and this leads to the feedback influence resul
in partial suppression of thea generation of a magnetic field

The implications of our results for dynamo theory a
twofold. First, the nonlocality in time greatly influences th
dynamo growth rate of a magnetic field, however, the g
eration conditions are not sensitive to the addition of
memory effect due to nonzero time correlations: they
robust to the addition of nonlocal terms for mean-field d
namo Eq.~5!. Second, the memory effects introduce dras
changes to the front dynamics of a magnetic field.

III. GROWTH RATE FOR THE MEAN
FIELD DISK DYNAMO

In what follows, we study the influence of the memo
effects on the dynamo generation and propagation by u
an important example of a thin turbulent slab of thicknessh
and radiusR(R@h), which rotates with angular velocity
v(r ). This is a standard model for disk-like galaxies. W
neglect the effects of compressibility, diamagnetism, and
viations from the axial symmetry. We use the standard
proximation of constant turbulent diffusion coefficientb
@4,5,9–11#. We restrict our analysis to the kinematical a
pects of the problem, neglecting the influence of the m
netic field on the turbulent flow, i.e., the dependencies
a, b, ta , andtb on magnetic fieldB. With these simpli-
fications, the equations for the components of mean axis
metric magnetic fieldBr(t,r ,z) and Bw(t,r ,z) in the polar
cylindrical coordinates (r ,w,z) with the z axis coincident
with the rotation axis follow from Eq.~5!:
3-2
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]Br

]t
52E

2`

t

GaS t2s

ta
D ]

]z
~aBw!ds1bE

2`

t

GbS t2s

tb
D

3H ]2Br

]z2
1

]

]r F1

r

]

]r
~rBr !G J ds, ~6!

]Bw

]t
5g Br1E

2`

t

GaS t2s

ta
D ]

]z
~aBr !ds1bE

2`

t

GbS t2s

tb
D

3H ]2Bw

]z2
1

]

]r F1

r

]

]r
~rBw!G J ds. ~7!

Here,g5rdv/dr is the measure of differential rotation
and we are interested only in theBr(t,r ,z) and Bw(t,r ,z)
components of a magnetic field, becauseBz /Br ,w5O(h/R)
@4,5#. These components obey the vacuum boundary co
tions on the thin disk surfaces@4,5#:

Br ,w~ t,r ,2h!50, Br ,w~ t,r ,h!50.

The main goal of our analysis is to find the local growth ra
of the magnetic field and its spatial propagation, taking i
account the memory effects. First, consider magnetic-fi
generation in the usual way@4,5,9,10#, by neglecting the ra-
dial derivatives in Eqs.~6! and~7!. We represent the compo
nents of the magnetic fieldB as follows:

Br~ t,z!5br~z!exp~gt !, Bw~ t,z!5bw~z!exp~gt !,

wherebr(z) andbr(z) have to be found from the eigenvalu
problem

S g̃1
]2

]z2D br52R̃a

]~abw!

]z
,

S g̃1
]2

]z2D bw5R̃wbr1R̃a

]~abr !

]z
,

br~1!5br~21!5bw~1!5bw~21!50, ~8!

where

g̃5g/ f b~gTb!, R̃w5Rw / f b~gTb!,

R̃a5Ra f a~gTa /Ra!/ f b~gTb!,

f a,b~gua,b!5E
0

`

Ga,b~j/ua,b!exp~2gj!dj,

ua5Ta /Ra , ub5Tb .

Here, we use the dimensionless variablesz→z/h, t
→bt/h2, a→a0a(z), and dimensional parametersTa
5a0ta /h, Tb5btb /h2, Ra5a0h/b, Rw5gh2/b. Pa-
rameterg describes the growth rate of the magnetic fie
The eigenvalue problem~8! reduces to the well-known form
@4,5,9,10# in the case whenTa,b50. Otherwise, eigenvalue
03631
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g becomes a function of these correlation times, and
function is determined from problem~8! using the renormal-
ized parametersg̃, R̃a , R̃w .

Problem~8! coincides with the generation equations in t
local mean-field dynamo theory@4,5,9,10#. The only differ-
ence is that renormalized parametersg̃, R̃a , and R̃w are
dependent on incrementg of the time growth of the mag-
netic field. This means that generation equations~8! are uni-
versal and do not depend on the specific choice of mem
kernelsGa,b . The main physical conclusion from this un
versality is that since physically meaningful memory kern
must satisfy the normalization conditionf a,b(g50)51,
then the threshold combinations of dynamo parametersRa
andRb at a givena(z), providing the critical point of insta-
bility (Reg50), are the same for all memory kernels. The
critical parameters can be determined from the local me
field dynamo theory. To determine growth rateg in the gen-
eration region, eigenvalue problem~8! should be solved as
g̃5g̃(R̃a ,R̃w). This relation with the definitions of the
renormalized parametersg̃, R̃a , R̃w leads to a transcenden
tal equation forg. The specific dependence ofg on the re-
laxation timesTa,b and dynamo parametersRa,w has to be
determined by the specific forms of memory kernelsGa,b .

Let us illustrate the general results by using the import
example ofav dynamo (Ra!uRwu), which is of specific
interest for astrophysical problems@3–5,9–11#. We use the
exponential relaxation forms

GaS t2s

ta
D5

1

ta
expS 2

t2s

ta
D ,

GbS t2s

tb
D5

1

tb
expS 2

t2s

tb
D . ~9!

The solution of the eigenvalue problem~8! depends on the
form of the functiona(z). The av approximation requires
the antisymmetric charactera(z)52a(2z). Following the
asymptotic method of the solution of eigenvalue problem~8!
@4,5,10#, for the model casea(z)5z, the increment of maxi-
mal growth satisfies the algebraic equation:

g~11gTb!52
p2

4
1AD

11gTb

A11gTa /Ra

, D52RaRw .

~10!

Growth rateg is shown in Fig. 1 as a function of dimen
sionless correlation timesTa and Tb . Clearly, the nonlocal
terms corresponding to the turbulent helicity and the tur
lent transport influence growth rateg in opposing ways. The
turbulenta-source nonlocality leads to a slower field grow
~curve 1! due to the physical nature of the process: the in
gral representation of thea term in basic Eqs.~4! and ~5!
introduces the time memory of excitation. The nonlocality
turbulentb transport reduces the energy loss out of the d
and, hence, results in an increase of the field growth
~curve 2!. Moreover, for dynamo numbersD, close to critical
valueDcr , the influence of the transport nonlocality becom
very significant, and growth rateg increases drastically with
3-3
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Tb . It is worth noting that the critical valueDcr.p4/16 of
the dynamo numberD, at which the generation commenc
(g50), does not depend on the memory effects; this resu
in agreement with the general conclusion made above.

IV. MAGNETIC FRONT PROPAGATION
FOR THE DISK DYNAMO

Now we are in a position to discuss the problem of ma
netic front propagation. If the dynamo excitation takes pla
within a certain radius~say, r ,r 0), then the magnetic field
can propagate in the form of traveling fronts@10#. According
to the local dynamo theory, the speedv of a propagating
magnetic front is proportional toAbg due to the FKPP type
of mean-field Eq.~1!. The problem is that in the local mean
field description of magnetic fields, turbulent diffusion i
duces an infinitely long Gaussian tail ahead of the magn
front which leads to the overestimation of the propagat
rate. A qualitatively different situation appears when t
memory effects are taken into account. This means
speed v cannot exceed the maximum possible veloc
Ab/tb, however large the growth rateg is. This can be ex-
plained as follows. Let us consider the simple situation wh
u50 andta50, whereastbÞ0. By using the exponentia
expression for memory kernelGb , the nonlocal mean-field
dynamo Eq.~5! can be rewritten as a local equation invol
ing the second derivative with respect to time

tb

]2B

]t2
1

]

]t
@B2tb curl~aB!#5curl~aB!1bDB.

It is well known that equations of such type, unlike parabo
equations, correspond to the transport phenomena with
finite maximal propagation velocity being equal toAb/tb.
Therefore, integral nonlocal model~5! takes into account the
fact that the dynamo propagation of magnetic field is ch
acterized by a finite maximal velocity, which is determin
by the turbulent pulsations.

Now let us turn to the problem of front propagation in t
case when the dynamo equation with memory~5! is consid-
ered in the thin disk approximation. Assume that the init
distribution of magnetic field satisfies:B5B05const if r

FIG. 1. Dependencies of the dimensionless growth rateg on
turbulenta-source relaxation timeTa at Tb50 ~curve 1! as well as
on transport timeTb whenTa50 ~curve 2!. Memory kernelsGa,b

are chosen to have the form of Eq.~9!; the dimensionless dynam
parameters of the system are:Ra51 andRw56.1.
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,r0 andB50 otherwise. The main quantity of interest is th
speedv at which the magnetic field propagates in the form
a self-similar wave for large values ofr and t. In the large-
distance limit (r→`) the radial Laplace operato
]/]r @1/r „](rB)/]r …# in Eqs. ~6! and ~7! can be approxi-
mated by the second derivative]2B/]r 2 and we may find the
solution of these equations in the form of Fourier modes

Br~ t,r ,z!5br~z!exp~gt1 ikr !, Bw~ t,r ,z!5bw~z!exp~gt

1 ikr !.

Substitution of these expressions into Eqs.~6! and ~7! leads
to the problem for eigenfunctionsbr ,w @4,5#, from which one
can find the equation for the exponentg(k) as a function of
wave numberk. The general theory of front propagation
nonlocal reaction-transport media@15,16#, based on the
saddle-point method of calculation of the inverse Fourier
tegrals, leads to the following equations for the propagat
velocity:

v5
g~p!

p
,

g~p!

p
5

dg~p!

dp
,

wherep5 ik. We have found that front velocityv is a mono-
tonically decreasing function of both correlation timesta
andtb . In particular, it depends weakly onta ~see Fig. 2!,
but decreases significantly~up to 2–3 times! with growing
tb . Therefore, the use of the FKPP-like estimation for t
traveling wave velocityv;Abg for systems with memory
leads to significant overestimations. This general conclus
is of great importance not only for magnetic dynamo fro
propagation but for a wide class of excitable media.

V. SUMMARY

Basically, we have extended the classical mean-field
namo theory to the case when the memory effects are ta
into account. We have suggested the effective equation
the large-scale magnetic field that takes into account the
nite correlation times of the turbulent flow. This equatio
involves memory integrals corresponding to the dyna

FIG. 2. Dependence of dimensionless front velocityṽ
5v(Ta ,Tb)/v(0,0) on relaxation timeTb at Ta50 ~curve 1!, 0.3
~curve 2!, and 0.9~curve 3!. The dynamo parameters areRa52 and
Rw5240.
3-4
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source term describing the alpha effect and turbulent tra
port of magnetic field. We have found that memory effe
can drastically change the dynamo growth rate, in particu
the finite turbulent transport involving memory might in
crease the growth rate several times. We have also found
memory effects lead to the essential decrease of the spe
magnetic front propagation.
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